近期论文
您的位置: 首页 > 科研成果 > 近期论文 >
Mitochondrial dynamics and mitophagy are necessary for proper invasive growth in rice blast
Yanjun Kou+*, Yunlong He+, Jiehua Qiu, Yazhou Shu, Fan Yang, Yizhen Deng and Naweed I. Naqvi*
Molecular Plant Pathology , 2019
DOI:10.1111/mpp.12822

Abstract


Magnaporthe oryzae causes blast disease, which is one of the most devastating infections in rice and several important cereal crops. Magnaporthe oryzae needs to coordinate gene regulation,morphological changes, nutrient acquisition and host evasion in order to invade and proliferate within the plant tissues. Thus far,the molecular mechanisms underlying the regulation of invasive growth in planta have remained largely unknown. We identified a precise filamentous-punctate-filamentous cycle in mitochondrial morphology during Magnaporthe–rice interaction. Interestingly,disruption of such mitochondrial dynamics by deletion of genes regulating either the mitochondrial fusion (MoFzo1) or fission (MoDnm1) machinery, or inhibition of mitochondrial fission using Mdivi-1 caused significant reduction in M. oryzae pathogenicity.Furthermore, exogenous carbon source(s) but not antioxidant treatment delayed such mitochondrial dynamics/transition during invasive growth. In contrast, carbon starvation induced the breakdown of the mitochondrial network and led to more punctate mitochondria in vitro. Such nutrient-based regulation of organellar dynamics preceded MoAtg24-mediated mitophagy,which was found to be essential for proper biotrophic development and invasive growth in planta. We propose that precise mitochondrial dynamics and mitophagy occur during the transition from biotrophy to necrotrophy and are required for proper induction and establishment of the blast disease in rice.