王克剑

职称:研究员
专业学科:作物种质资源学
研究方向:无融合生殖技术固定杂种优势研究等
所在团队:水稻基因组编辑及无融合生殖研究创新团队

一、个人简介

王克剑,研究员、博士生导师、课题组长。国家杰出青年基金获得者,陈嘉庚青年科学奖获得者(农业领域首次),中国水稻研究所副所长,水稻生物育种全国重点实验室常务副主任,国家水稻产业体系副首席科学家,中国农业科学院科技创新工程团队首席科学家。主要开展生物育种前沿技术的研发工作。利用基因组编辑技术成功获得杂交稻克隆种子,实现杂交稻无融合生殖“从0到1”的突破。先后在Nature Biotechnology、Molecular Plant、Plant Cell等SCI期刊上发表论文50余篇;以第一完成人获国家发明专利22项。承担国家自然科学基金、国家重点研发计划等科研项目11项。现任中国农学会常务理事、中国作物学会和中国农业生物技术学会理事;担任Science Bulletin、JIPB、New Crops、aBIOTECH、BMC Plant Biology和Rice Science等期刊副主编或编委。

二、主要研究方向:

1、无融合生殖技术固定杂种优势研究;

2、基因编辑技术研发及应用;

3、高通量分子鉴定技术研发及应用。

三、承担项目:

1.国家重点研发计划,中国农村技术开发中心,2022YFF1003304,农作物杂种优势形成的组学解析与设计育种(项目)/杂种优势利用与固定研究(课题),2022-12-01至2027-11-30,在研,课题主持。

2.国家自然科学基金委员会,基础科学中心项目,32188102,农作物种质创新与创制(项目)/杂种优势固定(课题),2022-01-01至2026-12-31,在研,主要负责。

3.国家自然科学基金委员会,杰出青年基金项目,32025028,杂交水稻无融合生殖,2021-01至2025-12,在研,主持。

4.农业农村部,现代农业产业技术体系,CARS--01,绿色优质高效水稻新品种培育与示范—水稻加倍单倍体技术优化与应用,2021-01至2025-12,在研,主要负责。

5.国家自然科学基金委员会,联合基金重点项目,U20A2030,水稻无融合生殖分子机理研究,2021-01至2024-12,在研,主持。

6.农业农村部,农业科研杰出人才培养计划及其创新团队培养,2021-04至2022-04,主持,结题。

7.中组部,国家高层次人才特殊支持计划青年拔尖人才,2020-09至2025-09,在研,主持。

8.浙江省科学技术厅,2013E10021,浙江省超级稻重点实验室,2019-01至2021-12,结题,参与。

9.浙江省自然科学基金,重点项目,LZ14C130003,水稻重组与联会基因的分离及功能研究,2014-01至2017-12,结题,主持。

10. 国家自然科学基金,面上项目,31271681,利用基因组编辑技术创制水稻无融合种质, 2013-01至2016-12,结题,主持。

四、代表成果:

1、建立无融合生殖体系。利用多基因编辑技术同时编辑四个生殖相关的内源基因,成功通过人工设计合成的途径成功创建杂交水稻无融合生殖技术体系,首次获得杂交水稻的克隆种子,实现了杂交水稻无融合生殖从0到1的重大突破(Nature Biotechnology,2019,通讯作者,封面文章),成功开辟了杂种优势固定研究的方向。

2、优化 CRISPR/Cas 基因组编辑技术在水稻中的应用。建立并优化了高效的水稻基因组编辑技术系统,对不同栽培稻背景下的多个产量数量性状基因进行了定点编辑,为基因编辑改良农艺性状提供重要参考;发展了新的水稻基因组编辑工具,使得水稻基因组编辑范围从可以多识别 NGA 及 NGCG 两个 PAM 到几乎不再受 PAM 的限制,极大拓展了水稻基因组的可编辑范围;开发了水稻高效引导编辑系统,可以在基因组的靶位点处实现任意碱基替换和小片段精准删除、插入,为突破农作物现有种质资源限制、根据生产需求人工定向进化优异性状提供了重要工具,将极大加速农作物育种进程。

3、创建简单高效的基因编辑突变筛选方法。发展了临界点PCR用于快速鉴定基因编辑突变体;针对基因组编辑后大样本序列鉴定耗时费力的问题,开发了基于二代高通量测序的Hi-TOM:突变分析检测平台,还建立了Hi-Meth: DNA甲基化检测平台和FED:基因组外源成分检测平台。这些简单、高效、快速、低成本的鉴定基因组编辑突变的方法和平台,深受基因编辑领域科研工作者的认可,极大促进了基因编辑领域的发展,有望为全球基因组编辑生物的应用和安全监管提供重要工具平台,为无融合生殖研究奠定技术基础。

五、代表论文

1. Xiong, J., Ji, Y., Yang, S., Huang, Y., Qiu, X., Qian, Q., Underwood, C., Wang K*. (2025) Extending Mendel's legacy: the application of hawkweed PpPAR for inducing synthetic apomixis in hybrid rice. Plant Commun. (in press)

2. Hu, F., Liu, C., Jin, X., Sun, T., Hong, L., Rao, Y., Qian, Q., Wang K*. (2025) OsPLDa2-dependentsynthetic apomixis enables normal seed setting in hybrid rice via genome editing. Sci Bull. 10.1016/j.scib.2025.05.022.

3. Huang, Y., Meng, X., Rao, Y., Xie, Y., Sun, T., Chen, W., Wei, X., Xiong, J., Yu, H., Li, J., and Wang, K*. (2025). OsWUS-driven synthetic apomixis in hybrid rice. Plant Commun 6, 101136.

4. Chen, W.Q., Xu, L., Rao, Y., Liu, C., Hong, Z., Lu, H., Liu, C.M., Li, H.J*., and Wang, K*. (2025). Self-propagated clonal seed production in dicotyledonous Arabidopsis. Sci Bull.70, 1416-1419

5. Zou, J., Meng, X., Hong, Z., Rao, Y., Wang, K., Li, J., Yu, H*., and Wang, C*. (2025). Cas9-PE: a robust multiplex gene editing tool for simultaneous precise editing and site-specific random mutation in rice. Trends Biotechnol 43, 433-446.

6. Hong, Z., Zhu, L., Liu, C., Wang, K., Rao, Y*., and Lu, H*. (2024). Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species. Genes (Basel) 15.

7. Huang, Y., Liang, Y., Xie, Y., Rao, Y., Xiong, J., Liu, C., Wang, C., Wang, X*., Qian, Q*., and Wang, K*. (2024). Efficient haploid induction via egg cell expression of dandelion PARTHENOGENESIS in foxtail millet (Setaria italica). Plant Biotechnol J 22, 1797-1799.

8. Liu, C., Yan, S., Mao, F., Sun, T., Liang, H., Liu, Q., Qian, Q*., and Wang, K*. (2024). Large-scale production of rice haploids by combining superior haploid inducer with PTGMS lines. Plant Commun 5, 101067.

9. Sun, T., Liu, Q*., Chen, X., Hu, F., and Wang, K*. (2024). Hi-TOM 2.0: an improved platform for high-throughput mutation detection. Sci China Life Sci 67, 1532-1534.

10. Wang, C., Wang, K., and Kou, Y*. (2024). Genome editing creates disease-resistant crops without yield penalties. Trends Plant Sci 29, 114-116.

11. Zou, J., Huang, Y., Gao, C*., and Wang, K*. (2024a). Unlocking crop diversity: Enhancing variations through genome editing. Sci Bull 69, 281-284.

12. Zou, J., Li, Y., Wang, K., Wang, C*., and Zhuo, R*. (2024b). Prime editing enables precise genome modification of a Populus hybrid. aBiotech 5, 497-501.

13. Ercolano, M.R*., and Wang, K. (2023). Editorial: Targeted genome editing for crop improvement. Front Plant Sci 14, 1106996.

14. Liu, C., He, Z., Zhang, Y., Hu, F., Li, M., Liu, Q., Huang, Y., Wang, J., Zhang, W*., Wang, C*., and Wang, K*. (2023). Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice. Plant Commun 4, 100470.

15. Wei, X., Liu, C., Chen, X., Lu, H., Wang, J., Yang, S., and Wang, K*. (2023). Synthetic apomixis with normal hybrid rice seed production. Mol Plant 16, 489-492.

16. Wei, X., Liu, Q., Sun, T., Jiao, X., Liu, C., Hua, Y., Chen, X., and Wang, K*. (2023). Manipulation of genetic recombination by editing the transcriptional regulatory regions of a meiotic gene in hybrid rice. Plant Commun 4, 100474.

17. Xiong, J., Hu, F., Ren, J., Huang, Y., Liu, C., and Wang, K*. (2023). Synthetic apomixis: the beginning of a new era. Curr Opin Biotechnol 79, 102877.

18. Xiong, J., Wang, C., and Wang, K*. (2023). Construction of CRISPR/Cas9 Multiplex Genome Editing System in Rice. Methods Mol Biol 2653, 107-114.

19. Zhu, G., Zhang, L., Ma, L., Liu, Q., Wang, K., Li, J., Qu, G., Zhu, B., Fu, D., Luo, Y., and Zhu, H*. (2023). Efficient large fragment deletion in plants: double pairs of sgRNAs are better than dual sgRNAs. Hortic Res 10, uhad168.

20. Huang, Y., Shang, M., Liu, T., and Wang, K*. (2022). High-throughput methods for genome editing: the more the better. Plant Physiol 188, 1731-1745.

21. Rao, Y*., Yang, X., Pan, C., Wang, C., and Wang, K*. (2022). Advance of Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 System and Its Application in Crop Improvement. Front Plant Sci 13, 839001.

22. Wang, K., Zhou, H., and Qian, Q*. (2022). The rice codebook: From reading to editing. Mol Plant 15, 569-572.

23. Wang, N., Xia, X., Jiang, T., Li, L., Zhang, P., Niu, L., Cheng, H., Wang, K., and Lin, H*. (2022). In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnol J 20, 22-24.

24. Zou, J., Meng, X., Liu, Q., Shang, M., Wang, K., Li, J., Yu, H*., and Wang, C*. (2022). Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice. Sci China Life Sci 65, 2328-2331.

25. Dong, H., Huang, Y., and Wang, K*. (2021). The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes (Basel) 12.

26. Hu, D., Yu, Y., Wang, C., Long, Y., Liu, Y., Feng, L., Lu, D., Liu, B., Jia, J., Xia, R., Du, J., Zhong, X., Gong, L., Wang, K*., and Zhai, J*. (2021). Multiplex CRISPR-Cas9 editing of DNA methyltransferases in rice uncovers a class of non-CG methylation specific for GC-rich regions. Plant Cell 33, 2950-2964.

27. Liu, C., Cao, Y., Hua, Y., Du, G., Liu, Q., Wei, X., Sun, T., Lin, J., Wu, M., Cheng, Z., and Wang, K*. (2021). Concurrent Disruption of Genetic Interference and Increase of Genetic Recombination Frequency in Hybrid Rice Using CRISPR/Cas9. Front Plant Sci 12, 757152.

28. Liu, Q., Jiao, X., Meng, X., Wang, C., Xu, C., Tian, Z., Xie, C., Li, G., Li, J., Yu, H*., and Wang, K*. (2021). FED: a web tool for foreign element detection of genome-edited organism. Sci China Life Sci 64, 167-170.

29. Ren, J., Meng, X., Hu, F., Liu, Q., Cao, Y., Li, H., Yan, C., Li, J., Wang, K., Yu, H*., and Wang, C*. (2021). Expanding the scope of genome editing with SpG and SpRY variants in rice. Sci China Life Sci 64, 1784-1787.

30. Wang, K*. (2021). Yuan Longping (1930-2021). Nat Plants 7, 858-859.

31. Xia, L., Wang, K., and Zhu, J.K*. (2021). The power and versatility of genome editing tools in crop improvement. J Integr Plant Biol 63, 1591-1594.

32. Chen, B., Niu, Y., Wang, H., Wang, K., Yang, H., and Li, W*. (2020). Recent advances in CRISPR research. Protein Cell 11, 786-791.

33. Hu, F.Y., and Wang, K.J*. (2020). The STEME system: a novel tool for directed evolution in vivo. Yi Chuan 42, 231-235.

34. Wang, K*. (2020). Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBiotech 1, 15-20.

35. Xu, Y., Meng, X., Wang, J., Qin, B., Wang, K., Li, J., Wang, C*., and Yu, H*. (2020). ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice. Sci China Life Sci 63, 450-452.

36. Li, S., Shen, L., Hu, P., Liu, Q., Zhu, X., Qian, Q., Wang, K*., and Wang, Y*. (2019). Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. J Integr Plant Biol 61, 1201-1205.

37. Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., and Wang, K*. (2019). Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci 62, 1-7. (Cover Story)

38. Wang, C., Liu, Q., Shen, Y., Hua, Y., Wang, J., Lin, J., Wu, M., Sun, T., Cheng, Z., Mercier, R., and Wang, K*. (2019). Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 37, 283-286. (Cover Story)

39. Wang, C., and Wang, K*. (2019). Rapid Screening of CRISPR/Cas9-Induced Mutants Using the ACT-PCR Method. Methods Mol Biol 1917, 27-32.

40. Wang, J., Meng, X., Hu, X., Sun, T., Li, J., Wang, K *., and Yu, H*. (2019a). xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnol J 17, 709-711.

41. Wang, J., Wang, C., and Wang, K*. (2019b). Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. J Genet Genomics 46, 61-64.

42. Hu, X., Meng, X., Liu, Q., Li, J*., and Wang, K*. (2018). Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16, 292-297.

43. Meng, X., Hu, X., Liu, Q., Song, X., Gao, C., Li, J*., and Wang, K*. (2018). Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Sci China Life Sci 61, 122-125.

44. Zhan, N., Wang, C., Chen, L., Yang, H., Feng, J., Gong, X., Ren, B., Wu, R., Mu, J., Li, Y., Liu, Z., Zhou, Y., Peng, J., Wang, K., Huang, X., Xiao, S., and Zuo, J *. (2018). S-Nitrosylation Targets GSNO Reductase for Selective Autophagy during Hypoxia Responses in Plants. Mol Cell 71, 142-154 e146.

45. Shen, L., Wang, C., Fu, Y., Wang, J., Liu, Q., Zhang, X., Yan, C., Qian, Q *., and Wang, K *. (2018). QTL editing confers opposing yield performance in different rice varieties. Journal of Integrative Plant Biology 60, 89-93. (Cover Story)

46. Hu, X., Wang, C., Liu, Q., Fu, Y., and Wang, K*. (2017). Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics 44, 71-73.

47. Hua, Y., Wang, C., Huang, J., and Wang, K*. (2017). A simple and efficient method for CRISPR/Cas9-induced mutant screening. J Genet Genomics 44, 207-213.

48. Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C*., and Wang, K*. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60, 506-515.

49. Zhang, P., Zhang, Y., Sun, L., Sinumporn, S., Yang, Z., Sun, B., Xuan, D., Li, Z., Yu, P., Wu, W., Wang, K., Cao, L*., and Cheng, S*. (2017). The Rice AAA-ATPase OsFIGNL1 Is Essential for Male Meiosis. Front Plant Sci 8, 1639.

50. Hu, X., Wang, C., Fu, Y., Liu, Q., Jiao, X., and Wang, K*. (2016). Expanding the Range of CRISPR/Cas9 Genome Editing in Rice. Mol Plant 9, 943-945.

51. Wang, C., Shen, L., Fu, Y., Yan, C., and Wang, K*. (2015). A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice. J Genet Genomics 42, 703-706.

52. Wang, K*., Wang, C., Liu, Q., Liu, W., and Fu, Y. (2015). Increasing the Genetic Recombination Frequency by Partial Loss of Function of the Synaptonemal Complex in Rice. Mol Plant 8, 1295-1298. (Cover Story)

53. Che, L., Wang, K., Tang, D., Liu, Q., Chen, X., Li, Y., Hu, Q., Shen, Y., Yu, H., Gu, M., and Cheng, Z*. (2014). OsHUS1 facilitates accurate meiotic recombination in rice. PLoS Genet 10, e1004405.

54. Ji, J., Tang, D., Wang, M., Li, Y., Zhang, L., Wang, K., Li, M., and Cheng, Z*. (2013). MRE11 is required for homologous synapsis and DSB processing in rice meiosis. Chromosoma 122, 363-376.

55. Wu, X., Tang, D., Li, M., Wang, K., and Cheng, Z*. (2013). Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161, 317-329.

56. Hong, L., Qian, Q., Tang, D., Wang, K., Li, M., and Cheng, Z*. (2012). A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta 236, 141-151.

57. Hong, L., Tang, D., Shen, Y., Hu, Q., Wang, K., Li, M., Lu, T., and Cheng, Z*. (2012). MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. New Phytol 196, 402-413.

58. Hong, L., Tang, D., Zhu, K., Wang, K., Li, M., and Cheng, Z*. (2012c). Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. Plant Cell 24, 577-588.

59. Ji, J., Tang, D., Wang, K., Wang, M., Che, L., Li, M., and Cheng, Z*. (2012). The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis. Plant J 72, 18-30.

60. Shen, Y., Tang, D., Wang, K., Wang, M., Huang, J., Luo, W., Luo, Q., Hong, L., Li, M., and Cheng, Z*. (2012). ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis. J Cell Sci 125, 2581-2591.

61. Wang, K., Wang, M., Tang, D., Shen, Y., Miao, C., Hu, Q., Lu, T., and Cheng, Z*. (2012). The role of rice HEI10 in the formation of meiotic crossovers. PLoS Genet 8, e1002809.

62. Wang, M., Tang, D., Luo, Q., Jin, Y., Shen, Y., Wang, K., and Cheng, Z*. (2012). BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. Plant Cell 24, 4961-4973.

63. Che, L., Tang, D., Wang, K., Wang, M., Zhu, K., Yu, H., Gu, M., and Cheng, Z*. (2011). OsAM1 is required for leptotene-zygotene transition in rice. Cell Res 21, 654-665.

64. Li, M., Tang, D., Wang, K., Wu, X., Lu, L., Yu, H., Gu, M., Yan, C., and Cheng, Z*. (2011). Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9, 1002-1013.

65. Qin, B.X., Tang, D., Huang, J., Li, M., Wu, X.R., Lu, L.L., Wang, K.J., Yu, H.X., Chen, J.M., Gu, M.H., and Cheng, Z.K*. (2011). Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Mol Plant 4, 985-995.

66. Shao, T., Tang, D., Wang, K., Wang, M., Che, L., Qin, B., Yu, H., Li, M., Gu, M., and Cheng, Z*. (2011). OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiol 156, 1386-1396.

67. Wang, K., Wang, M., Tang, D., Shen, Y., Qin, B., Li, M., and Cheng, Z*. (2011). PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Mol Biol Cell 22, 12-19.

68. Wang, M., Tang, D., Wang, K., Shen, Y., Qin, B., Miao, C., Li, M., and Cheng, Z*. (2011). OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant J 67, 583-594.

69. Wang, K., Tang, D., Hong, L., Xu, W., Huang, J., Li, M., Gu, M., Xue, Y., and Cheng, Z*. (2010). DEP and AFO regulate reproductive habit in rice. PLoS Genet 6, e1000818. (Cover Story)

70. Wang, M., Wang, K., Tang, D., Wei, C., Li, M., Shen, Y., Chi, Z., Gu, M., and Cheng, Z*. (2010). The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell 22, 417-430.

71. Wang, K., Tang, D., Wang, M., Lu, J., Yu, H., Liu, J., Qian, B., Gong, Z., Wang, X., Chen, J., Gu, M., and Cheng, Z*. (2009). MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J Cell Sci 122, 2055-2063.

六、联系方式

通讯地址:浙江省杭州市富阳区水稻所路28号 中国水稻研究所 311401

电 话:15382362723

电子邮箱:wangkejian@caas.cn


内容更新时间:2025-05-16           内容更新请联系:contact@cnrri.net

Copyright © 2003-2025 CNRRI. All rights reserved. 中国水稻研究所 版权所有
地址:杭州市体育场路359号(邮政编码:310006)