水稻生物育种全国重点实验室

基因编辑与无融合生殖

来源:作者:发布时间:2021-03-18


16171.jpg


组长:王克剑

电话:0571-63370202

邮箱:wangkejian@caas.cn

所属部门:水稻生物育种全国重点实验室

 

王克剑,研究员,博士生导师,水稻生物育种全国重点实验室副主任;国家杰出青年基金获得者,2020年度陈嘉庚青年科学奖获得者(农业领域首次);农业农村部“杰出青年农业科学家”;中国农业科学院科技创新工程团队首席科学家,现任中国作物学会理事、中国遗传学会基因组编辑分会委员。

无融合生殖(Apomixis)是植物通过卵细胞或其他体细胞直接发育成胚胎,而不经过减数分裂和受精,从而产生与母本基因型相同的后代。这种生殖方式能够保留母本的优良性状,避免了有性生殖中基因重组带来的遗传变异,为生物学研究和农业应用开辟了新的途径。深入研究无融合生殖有望将“一次杂交、永久高产”的理论概念转化为实际应用,为农业可持续发展和粮食安全提供新的解决方案。

我们团队目前在杂交水稻中成功建立了无融合生殖体系FixFix2Fix3Fix4Fix5。实验室通过整合正向遗传学、CRISPR-Cas介导的精准基因编辑和多组学分析等手段,系统地探索以下核心问题:

1. 挖掘无融合生殖相关基因。

我们通过正向遗传学手段挖掘新基因,构建新的无融合生殖体系,旨在解决领域内诱导率和结实率无法双高的难题。

2. 非转基因无融合生殖体系的建立

对无融合生殖载体进行设计改造,并整合基因编辑技术,以实现无外源成分的无融合生殖策略,为农业生产奠定基础。

3. 杂交育种模式的创新

通过用无融合生殖策略替代目前雄性不育/恢复系体系,扩大杂交水稻双亲的选择范围,从而更高效的利用杂种优势。 

Publications

1. Xiong, J., Ji, Y., Yang, S., Huang, Y., Qiu, X., Qian, Q., Underwood, C., Wang K*. (2025) Extending Mendel's legacy: the application of hawkweed PpPAR for inducing synthetic apomixis in hybrid rice. Plant Commun. (in press)

2. Hu, F., Liu, C., Jin, X., Sun, T., Hong, L., Rao, Y., Qian, Q., Wang K*. (2025) OsPLDa2-dependentsynthetic apomixis enables normal seed setting in hybrid rice via genome editing. Sci Bull. 10.1016/j.scib.2025.05.022.

3. Huang, Y., Meng, X., Rao, Y., Xie, Y., Sun, T., Chen, W., Wei, X., Xiong, J., Yu, H., Li, J., and Wang, K*. (2025). OsWUS-driven synthetic apomixis in hybrid rice. Plant Commun 6, 101136.

4. Chen, W.Q., Xu, L., Rao, Y., Liu, C., Hong, Z., Lu, H., Liu, C.M., Li, H.J*., and Wang, K*. (2025). Self-propagated clonal seed production in dicotyledonous Arabidopsis. Sci Bull.70, 1416-1419

5. Zou, J., Meng, X., Hong, Z., Rao, Y., Wang, K., Li, J., Yu, H*., and Wang, C*. (2025). Cas9-PE: a robust multiplex gene editing tool for simultaneous precise editing and site-specific random mutation in rice. Trends Biotechnol 43, 433-446.

6. Hong, Z., Zhu, L., Liu, C., Wang, K., Rao, Y*., and Lu, H*. (2024). Genome-Wide Identification and Evolutionary Analysis of Functional BBM-like Genes in Plant Species. Genes (Basel) 15.

7. Huang, Y., Liang, Y., Xie, Y., Rao, Y., Xiong, J., Liu, C., Wang, C., Wang, X*., Qian, Q*., and Wang, K*. (2024). Efficient haploid induction via egg cell expression of dandelion PARTHENOGENESIS in foxtail millet (Setaria italica). Plant Biotechnol J 22, 1797-1799.

8. Liu, C., Yan, S., Mao, F., Sun, T., Liang, H., Liu, Q., Qian, Q*., and Wang, K*. (2024). Large-scale production of rice haploids by combining superior haploid inducer with PTGMS lines. Plant Commun 5, 101067.

9. Sun, T., Liu, Q*., Chen, X., Hu, F., and Wang, K*. (2024). Hi-TOM 2.0: an improved platform for high-throughput mutation detection. Sci China Life Sci 67, 1532-1534.

10. Wang, C., Wang, K., and Kou, Y*. (2024). Genome editing creates disease-resistant crops without yield penalties. Trends Plant Sci 29, 114-116.

11. Zou, J., Huang, Y., Gao, C*., and Wang, K*. (2024a). Unlocking crop diversity: Enhancing variations through genome editing. Sci Bull 69, 281-284.

12. Zou, J., Li, Y., Wang, K., Wang, C*., and Zhuo, R*. (2024b). Prime editing enables precise genome modification of a Populus hybrid. aBiotech 5, 497-501.

13. Ercolano, M.R*., and Wang, K. (2023). Editorial: Targeted genome editing for crop improvement. Front Plant Sci 14, 1106996.

14. Liu, C., He, Z., Zhang, Y., Hu, F., Li, M., Liu, Q., Huang, Y., Wang, J., Zhang, W*., Wang, C*., and Wang, K*. (2023). Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice. Plant Commun 4, 100470.

15. Wei, X., Liu, C., Chen, X., Lu, H., Wang, J., Yang, S., and Wang, K*. (2023). Synthetic apomixis with normal hybrid rice seed production. Mol Plant 16, 489-492.

16. Wei, X., Liu, Q., Sun, T., Jiao, X., Liu, C., Hua, Y., Chen, X., and Wang, K*. (2023). Manipulation of genetic recombination by editing the transcriptional regulatory regions of a meiotic gene in hybrid rice. Plant Commun 4, 100474.

17. Xiong, J., Hu, F., Ren, J., Huang, Y., Liu, C., and Wang, K*. (2023). Synthetic apomixis: the beginning of a new era. Curr Opin Biotechnol 79, 102877.

18. Xiong, J., Wang, C., and Wang, K*. (2023). Construction of CRISPR/Cas9 Multiplex Genome Editing System in Rice. Methods Mol Biol 2653, 107-114.

19. Zhu, G., Zhang, L., Ma, L., Liu, Q., Wang, K., Li, J., Qu, G., Zhu, B., Fu, D., Luo, Y., and Zhu, H*. (2023). Efficient large fragment deletion in plants: double pairs of sgRNAs are better than dual sgRNAs. Hortic Res 10, uhad168.

20. Huang, Y., Shang, M., Liu, T., and Wang, K*. (2022). High-throughput methods for genome editing: the more the better. Plant Physiol 188, 1731-1745.

21. Rao, Y*., Yang, X., Pan, C., Wang, C., and Wang, K*. (2022). Advance of Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 System and Its Application in Crop Improvement. Front Plant Sci 13, 839001.

22. Wang, K., Zhou, H., and Qian, Q*. (2022). The rice codebook: From reading to editing. Mol Plant 15, 569-572.

23. Wang, N., Xia, X., Jiang, T., Li, L., Zhang, P., Niu, L., Cheng, H., Wang, K., and Lin, H*. (2022). In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnol J 20, 22-24.

24. Zou, J., Meng, X., Liu, Q., Shang, M., Wang, K., Li, J., Yu, H*., and Wang, C*. (2022). Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice. Sci China Life Sci 65, 2328-2331.

25. Dong, H., Huang, Y., and Wang, K*. (2021). The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes (Basel) 12.

26. Hu, D., Yu, Y., Wang, C., Long, Y., Liu, Y., Feng, L., Lu, D., Liu, B., Jia, J., Xia, R., Du, J., Zhong, X., Gong, L., Wang, K*., and Zhai, J*. (2021). Multiplex CRISPR-Cas9 editing of DNA methyltransferases in rice uncovers a class of non-CG methylation specific for GC-rich regions. Plant Cell 33, 2950-2964.

27. Liu, C., Cao, Y., Hua, Y., Du, G., Liu, Q., Wei, X., Sun, T., Lin, J., Wu, M., Cheng, Z., and Wang, K*. (2021). Concurrent Disruption of Genetic Interference and Increase of Genetic Recombination Frequency in Hybrid Rice Using CRISPR/Cas9. Front Plant Sci 12, 757152.

28. Liu, Q., Jiao, X., Meng, X., Wang, C., Xu, C., Tian, Z., Xie, C., Li, G., Li, J., Yu, H*., and Wang, K*. (2021). FED: a web tool for foreign element detection of genome-edited organism. Sci China Life Sci 64, 167-170.

29. Ren, J., Meng, X., Hu, F., Liu, Q., Cao, Y., Li, H., Yan, C., Li, J., Wang, K., Yu, H*., and Wang, C*. (2021). Expanding the scope of genome editing with SpG and SpRY variants in rice. Sci China Life Sci 64, 1784-1787.

30. Wang, K*. (2021). Yuan Longping (1930-2021). Nat Plants 7, 858-859.

31. Xia, L., Wang, K., and Zhu, J.K*. (2021). The power and versatility of genome editing tools in crop improvement. J Integr Plant Biol 63, 1591-1594.

32. Chen, B., Niu, Y., Wang, H., Wang, K., Yang, H., and Li, W*. (2020). Recent advances in CRISPR research. Protein Cell 11, 786-791.

33. Hu, F.Y., and Wang, K.J*. (2020). The STEME system: a novel tool for directed evolution in vivo. Yi Chuan 42, 231-235.

34. Wang, K*. (2020). Fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBiotech 1, 15-20.

35. Xu, Y., Meng, X., Wang, J., Qin, B., Wang, K., Li, J., Wang, C*., and Yu, H*. (2020). ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice. Sci China Life Sci 63, 450-452.

36. Li, S., Shen, L., Hu, P., Liu, Q., Zhu, X., Qian, Q., Wang, K*., and Wang, Y*. (2019). Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. J Integr Plant Biol 61, 1201-1205.

37. Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., Gao, C., and Wang, K*. (2019). Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci 62, 1-7. (Cover Story)

38. Wang, C., Liu, Q., Shen, Y., Hua, Y., Wang, J., Lin, J., Wu, M., Sun, T., Cheng, Z., Mercier, R., and Wang, K*. (2019). Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 37, 283-286. (Cover Story)

39. Wang, C., and Wang, K*. (2019). Rapid Screening of CRISPR/Cas9-Induced Mutants Using the ACT-PCR Method. Methods Mol Biol 1917, 27-32.

40. Wang, J., Meng, X., Hu, X., Sun, T., Li, J., Wang, K *., and Yu, H*. (2019a). xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnol J 17, 709-711.

41. Wang, J., Wang, C., and Wang, K*. (2019b). Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. J Genet Genomics 46, 61-64.

42. Hu, X., Meng, X., Liu, Q., Li, J*., and Wang, K*. (2018). Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16, 292-297.

43. Meng, X., Hu, X., Liu, Q., Song, X., Gao, C., Li, J*., and Wang, K*. (2018). Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Sci China Life Sci 61, 122-125.

44. Zhan, N., Wang, C., Chen, L., Yang, H., Feng, J., Gong, X., Ren, B., Wu, R., Mu, J., Li, Y., Liu, Z., Zhou, Y., Peng, J., Wang, K., Huang, X., Xiao, S., and Zuo, J *. (2018). S-Nitrosylation Targets GSNO Reductase for Selective Autophagy during Hypoxia Responses in Plants. Mol Cell 71, 142-154 e146.

45. Shen, L., Wang, C., Fu, Y., Wang, J., Liu, Q., Zhang, X., Yan, C., Qian, Q *., and Wang, K *. (2018). QTL editing confers opposing yield performance in different rice varieties. Journal of Integrative Plant Biology 60, 89-93. (Cover Story)

46. Hu, X., Wang, C., Liu, Q., Fu, Y., and Wang, K*. (2017). Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics 44, 71-73.

47. Hua, Y., Wang, C., Huang, J., and Wang, K*. (2017). A simple and efficient method for CRISPR/Cas9-induced mutant screening. J Genet Genomics 44, 207-213.

48. Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., Yan, C*., and Wang, K*. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60, 506-515.

49. Zhang, P., Zhang, Y., Sun, L., Sinumporn, S., Yang, Z., Sun, B., Xuan, D., Li, Z., Yu, P., Wu, W., Wang, K., Cao, L*., and Cheng, S*. (2017). The Rice AAA-ATPase OsFIGNL1 Is Essential for Male Meiosis. Front Plant Sci 8, 1639.

50. Hu, X., Wang, C., Fu, Y., Liu, Q., Jiao, X., and Wang, K*. (2016). Expanding the Range of CRISPR/Cas9 Genome Editing in Rice. Mol Plant 9, 943-945.

51. Wang, C., Shen, L., Fu, Y., Yan, C., and Wang, K*. (2015). A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice. J Genet Genomics 42, 703-706.

52. Wang, K*., Wang, C., Liu, Q., Liu, W., and Fu, Y. (2015). Increasing the Genetic Recombination Frequency by Partial Loss of Function of the Synaptonemal Complex in Rice. Mol Plant 8, 1295-1298. (Cover Story)

53. Che, L., Wang, K., Tang, D., Liu, Q., Chen, X., Li, Y., Hu, Q., Shen, Y., Yu, H., Gu, M., and Cheng, Z*. (2014). OsHUS1 facilitates accurate meiotic recombination in rice. PLoS Genet 10, e1004405.

54. Ji, J., Tang, D., Wang, M., Li, Y., Zhang, L., Wang, K., Li, M., and Cheng, Z*. (2013). MRE11 is required for homologous synapsis and DSB processing in rice meiosis. Chromosoma 122, 363-376.

55. Wu, X., Tang, D., Li, M., Wang, K., and Cheng, Z*. (2013). Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161, 317-329.

56. Hong, L., Qian, Q., Tang, D., Wang, K., Li, M., and Cheng, Z*. (2012). A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta 236, 141-151.

57. Hong, L., Tang, D., Shen, Y., Hu, Q., Wang, K., Li, M., Lu, T., and Cheng, Z*. (2012). MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. New Phytol 196, 402-413.

58. Hong, L., Tang, D., Zhu, K., Wang, K., Li, M., and Cheng, Z*. (2012c). Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. Plant Cell 24, 577-588.

59. Ji, J., Tang, D., Wang, K., Wang, M., Che, L., Li, M., and Cheng, Z*. (2012). The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis. Plant J 72, 18-30.

60. Shen, Y., Tang, D., Wang, K., Wang, M., Huang, J., Luo, W., Luo, Q., Hong, L., Li, M., and Cheng, Z*. (2012). ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis. J Cell Sci 125, 2581-2591.

61. Wang, K., Wang, M., Tang, D., Shen, Y., Miao, C., Hu, Q., Lu, T., and Cheng, Z*. (2012). The role of rice HEI10 in the formation of meiotic crossovers. PLoS Genet 8, e1002809.

62. Wang, M., Tang, D., Luo, Q., Jin, Y., Shen, Y., Wang, K., and Cheng, Z*. (2012). BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. Plant Cell 24, 4961-4973.

63. Che, L., Tang, D., Wang, K., Wang, M., Zhu, K., Yu, H., Gu, M., and Cheng, Z*. (2011). OsAM1 is required for leptotene-zygotene transition in rice. Cell Res 21, 654-665.

64. Li, M., Tang, D., Wang, K., Wu, X., Lu, L., Yu, H., Gu, M., Yan, C., and Cheng, Z*. (2011). Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9, 1002-1013.

65. Qin, B.X., Tang, D., Huang, J., Li, M., Wu, X.R., Lu, L.L., Wang, K.J., Yu, H.X., Chen, J.M., Gu, M.H., and Cheng, Z.K*. (2011). Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Mol Plant 4, 985-995.

66. Shao, T., Tang, D., Wang, K., Wang, M., Che, L., Qin, B., Yu, H., Li, M., Gu, M., and Cheng, Z*. (2011). OsREC8 is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis. Plant Physiol 156, 1386-1396.

67. Wang, K., Wang, M., Tang, D., Shen, Y., Qin, B., Li, M., and Cheng, Z*. (2011). PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Mol Biol Cell 22, 12-19.

68. Wang, M., Tang, D., Wang, K., Shen, Y., Qin, B., Miao, C., Li, M., and Cheng, Z*. (2011). OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant J 67, 583-594.

69. Wang, K., Tang, D., Hong, L., Xu, W., Huang, J., Li, M., Gu, M., Xue, Y., and Cheng, Z*. (2010). DEP and AFO regulate reproductive habit in rice. PLoS Genet 6, e1000818. (Cover Story)

70. Wang, M., Wang, K., Tang, D., Wei, C., Li, M., Shen, Y., Chi, Z., Gu, M., and Cheng, Z*. (2010). The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell 22, 417-430.

71. Wang, K., Tang, D., Wang, M., Lu, J., Yu, H., Liu, J., Qian, B., Gong, Z., Wang, X., Chen, J., Gu, M., and Cheng, Z*. (2009). MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J Cell Sci 122, 2055-2063.

 

课题组成员

研究与技术人员:王克剑、王春、刘庆、刘朝雷、黄勇

 

联 系 人:王克剑

联系电话:0571-63370202     传真:0571-63370202     电子邮箱:wangkejian@caas.cn

 


(浏览次数: )