Abstract
The damage induced by the uptake of cadmium (Cd) into the rice plant is of growing concern. Although many micro-RNAs (miRNAs) and their target genes have been identified in experiments designed to elucidate the molecular impact of exposure to Cd, as yet there has been no attempt to integrate data from sequencing the microRNAome, the degradome and the transcriptome of rice plants exposed to Cd. Here, the abundance of 40 miRNAs was shown to be substantially altered as response to Cd exposure. Of those, 38 (belonging to 22 known miRNA families) were already documented in rice and two (PC-3p-38247_129 and PC-3p-102187_26) are novel. The abundance of 18 genes differentially transcribed as a result of Cd exposure was found to be inversely correlated to that of 18 of the Cd-responsive miRNAs. The majority of the target genes encoded transcription factors, including ARF13, SCL6, various SPLs, NFYA6, GAMYB, and various NACs which encode proteins that participate in signal transduction and abiotic stress resistance. In all, the present study established a fundamental basis for evaluating the regulatory role of miRNA and their targets in plant exposure to Cd stress.
Copyright © 2003-2019 China National Rice Research Institute. 中国水稻研究所 版权所有
地址:杭州市富阳区水稻所路28号(邮政编码:311401)电话:+86 571 63370590
杭州市拱墅区体育场路359号(邮政编码:310006)
京ICP备10039560号-5 浙公网安备33010302000429号
技术支持:中国农业科学院农业信息研究所